Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
South Afr J HIV Med ; 24(1): 1412, 2023.
Article in English | MEDLINE | ID: covidwho-2228277

ABSTRACT

Background: HIV infection causes immune dysregulation affecting T-cell and monocyte function, which may alter coronavirus disease 2019 (COVID-19) pathophysiology. Objectives: We investigated the associations among clinical phenotypes, laboratory biomarkers, and hospitalisation outcomes in a cohort of people hospitalised with COVID-19 in a high HIV prevalence area. Method: We conducted a prospective observational cohort study in Tshwane, South Africa. Respiratory disease severity was quantified using the respiratory oxygenation score. Analysed biomarkers included inflammatory and coagulation biomarkers, CD4 T-cell counts, and HIV-1 viral loads (HIVVL). Results: The analysis included 558 patients, of whom 21.7% died during admission. The mean age was 54 years. A total of 82 participants were HIV-positive. People living with HIV (PLWH) were younger (mean age 46 years) than HIV-negative people; most were on antiretroviral treatment with a suppressed HIVVL (72%) and the median CD4 count was 159 (interquartile range: 66-397) cells/µL. After adjusting for age, HIV was not associated with increased risk of mortality during hospitalisation (age-adjusted hazard ratio = 1.1, 95% confidence interval: 0.6-2.0). Inflammatory biomarker levels were similar in PLWH and HIV-negative patients. Detectable HIVVL was associated with less severe respiratory disease. In PLWH, mortality was associated with higher levels of inflammatory biomarkers. Opportunistic infections, and other risk factors for severe COVID-19, were common in PLWH who died. Conclusion: PLWH were not at increased risk of mortality and those with detectable HIVVL had less severe respiratory disease than those with suppressed HIVVL. What this study adds: This study advances our understanding of severe COVID-19 in PLWH.

2.
Cell Rep Med ; 4(1): 100910, 2023 01 17.
Article in English | MEDLINE | ID: covidwho-2165957

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.4 and BA.5 variants caused major waves of infections. Here, we assess the sensitivity of BA.4 to binding, neutralization, and antibody-dependent cellular cytotoxicity (ADCC) potential, measured by FcγRIIIa signaling, in convalescent donors infected with four previous variants of SARS-CoV-2, as well as in post-vaccination breakthrough infections (BTIs) caused by Delta or BA.1. We confirm that BA.4 shows high-level neutralization resistance regardless of the infecting variant. However, BTIs retain activity against BA.4, albeit at reduced titers. BA.4 sensitivity to ADCC is reduced compared with other variants but with smaller fold losses compared with neutralization and similar patterns of cross-reactivity. Overall, the high neutralization resistance of BA.4, even to antibodies from BA.1 infection, provides an immunological mechanism for the rapid spread of BA.4 immediately after a BA.1-dominated wave. Furthermore, although ADCC potential against BA.4 is reduced, residual activity may contribute to observed protection from severe disease.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , COVID-19 Serotherapy , SARS-CoV-2 , Humans , Antibodies , Breakthrough Infections , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology
4.
Nature ; 603(7901): 488-492, 2022 03.
Article in English | MEDLINE | ID: covidwho-1661968

ABSTRACT

The SARS-CoV-2 Omicron variant (B.1.1.529) has multiple spike protein mutations1,2 that contribute to viral escape from antibody neutralization3-6 and reduce vaccine protection from infection7,8. The extent to which other components of the adaptive response such as T cells may still target Omicron and contribute to protection from severe outcomes is unknown. Here we assessed the ability of T cells to react to Omicron spike protein in participants who were vaccinated with Ad26.CoV2.S or BNT162b2, or unvaccinated convalescent COVID-19 patients (n = 70). Between 70% and 80% of the CD4+ and CD8+ T cell response to spike was maintained across study groups. Moreover, the magnitude of Omicron cross-reactive T cells was similar for Beta (B.1.351) and Delta (B.1.617.2) variants, despite Omicron harbouring considerably more mutations. In patients who were hospitalized with Omicron infections (n = 19), there were comparable T cell responses to ancestral spike, nucleocapsid and membrane proteins to those in patients hospitalized in previous waves dominated by the ancestral, Beta or Delta variants (n = 49). Thus, despite extensive mutations and reduced susceptibility to neutralizing antibodies of Omicron, the majority of T cell responses induced by vaccination or infection cross-recognize the variant. It remains to be determined whether well-preserved T cell immunity to Omicron contributes to protection from severe COVID-19 and is linked to early clinical observations from South Africa and elsewhere9-12.


Subject(s)
COVID-19/immunology , COVID-19/virology , Cross Reactions/immunology , Immunity, Cellular , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Adult , Aged , COVID-19 Vaccines/immunology , Convalescence , Hospitalization , Humans , Middle Aged , SARS-CoV-2/chemistry , SARS-CoV-2/classification
SELECTION OF CITATIONS
SEARCH DETAIL